

3-Terminal 100mA Negative Voltage Regulator

TO-92

SOT-89

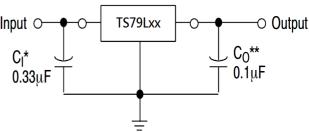
Pin Definition: 1. Ground

- Input
 Output
- **General Description**

The TS79L00 Series of negative voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100mA. Like their higher power TS7900 and TS79M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the TS79L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced.

Features


- Output Voltage Range -5V, -9V
- Output current up to 100mA
- Internal thermal overload protection
- Internal short-circuit current limiting
- Output transistor safe-area compensation
- Output voltage offered in 4% tolerance

Ordering Information

Part No.	Package	Packing
TS79L <u>xx</u> CT B0	TO-92	1Kpcs / Bulk
TS79L <u>xx</u> CT A3	TO-92	2kpcs / Ammo
TS79L <u>xx</u> CY RM	SOT-89	1kpcs / 7" Reel

Note: Refer to detail ordering information table.

Standard Application Circuit

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the Input ripple voltage.

XX = these two digits of the type number indicate voltage.

- * = Cin is required if regulator is located an appreciable distance from power supply filter.
- ** = Co is not needed for stability; however, it does improve transient response.

Absolute Maximum Ratings (Ta = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit		
Input Voltage	V _{IN}	-35	V		
Power Dissipation		P _D	Internal Limited	W	
Operating Temperature range		T _{OPR}	0~+125	°C	
Junction Temperature	T_J	+150	°C		
Storage Temperature Range	T _{STG}	-65~+150	°C		
Thermal Resistance - Junction to Case		В		°C/W	
Thermal Resistance - Junction to Case	SOT-89	R _{eJC}	18	C/VV	
Thermal Desistance Ityration to Ambient	TO-92	Б	210	°C/W	
Thermal Resistance - Junction to Ambient	SOT-89	$R_{\Theta JA}$		C/VV	

Note: * Considering 6cm2 of copper board heat-sink

3-Terminal 100mA Negative Voltage Regulator

TS79L05 Electrical Characteristics

 $(V_{IN}=-10V, I_{OUT}=40mA, 0^{\circ}C \le T_{J} \le 125^{\circ}C, C_{IN}=0.33uF, C_{OUT}=0.1uF; unless otherwise specified.)$

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
		T _J =25°C		-4.80	-5	-5.20	
Output voltage	V _{OUT}		-7.5V≤Vin≤-20V, 5mA≤l _{OUT} ≤100mA		-5	-5.25	V
Line Regulation	REG _{LINE}	T _J =25°C	-7.5V≤Vin≤-20V		50	150	.,
Load Pagulation	DEC	T,=25°C	5mA≤l _{OUT} ≤100mA		20	60	mV
Load Regulation	REG _{LOAD}	D 1 J=25 °C	5mA≤l _{OUT} ≤40mA		10	30	
Quiescent Current	IQ	I _{OUT} =0, T _J =25°C			3	6	
Ouisseent Current Change	Δ1	-7.5V≤Vin≤-25V				1.5	mA
Quiescent Current Change	ΔI_Q	5mA≤I _{OUT}	≤40mA			0.1]
Output Noise Voltage	V_N	10Hz≤f≤100KHz, T _J =25°C			40	1	μV
Ripple Rejection Ratio	RR	f=120Hz, -8V≤Vin≤-18V		41	49	ŀ	dB
Voltage Drop	V_{DROP}	I _{OUT} =100mA, T _J =25°C			1.7	1	V
Peak Output Current	lo peak	T _J =25°C			0.15	1	Α
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T_{J}$	I _{OUT} =5mA, 0°C≤T _J ≤125°C			-0.65	-	mV/°C

TS79L09 Electrical Characteristics

 $(V_{IN}$ =-15V, I_{OUT} =40mA, $0^{\circ}C \le T_{J} \le 125^{\circ}C$, C_{IN} =0.33uF, C_{OUT} =0.1uF; unless otherwise specified.)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
		T _J =25°C -11.5V≤Vin≤-24V, 5mA≤I _{OUT} ≤100mA		-8.65	-9	-9.36	
Output voltage	V _{OUT}			-8.57	-9	-9.45	V
Line Regulation	REG _{LINE}	T _J =25°C	-11.5V≤Vin≤-24V		90	180	\/
Load Regulation	DEC	T,=25°C	5mA≤l _{OUT} ≤100mA		30	90	mV
Load Regulation	REG _{LOAD}	1 _J =25 C	5mA≤l _{OUT} ≤40mA		15	45	
Quiescent Current	I _Q	I _{OUT} =0, T _J =25°C			3	6	
Outcoast Current Change	A1	-11V≤Vin≤-23V				1.5	mA
Quiescent Current Change	ΔI_Q	5mA≤l _{OUT}	5mA≤l _{OUT} ≤40mA		1	0.1	
Output Noise Voltage	V_N	10Hz≤f≤100KHz, T _J =25°C			60		μV
Ripple Rejection Ratio	RR	f=120Hz, =13V≤Vin≤=24V		37	57		dB
Voltage Drop	V_{DROP}	I _{OUT} =100mA, T _J =25°C			1.7		V
Peak Output Current	lo peak	T _J =25°C			0.15		Α
Temperature Coefficient of Output Voltage	$\Delta V_{OUT} / \Delta T_{J}$	I _{OUT} =5mA, 0°C≤T _J ≤125°C			-0.9		mV/°C

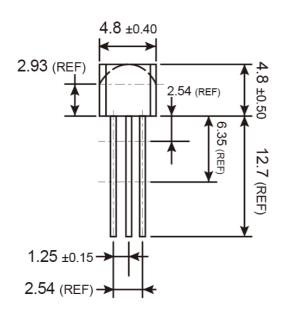
Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.

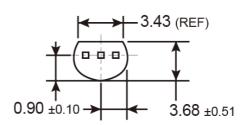
This specification applies only for DC power dissipation permitted by absolute maximum ratings.

3-Terminal 100mA Negative Voltage Regulator

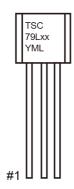
Ordering information

Voltage	TO-92	SOT-89
5V	TS79L05CT B0 TS79L05CT A3	TS79L05CY RM
9V	TS79L09CT B0 TS79L09CT A3	


Packing code information					
Packing	B0: 1kpcs / Bulk A3: 2kcs / Ammo	1kpcs / 7" Reel			



3-Terminal 100mA Negative Voltage Regulator


TO-92 Mechanical Drawing

Unit: Millimeters

Marking Diagram

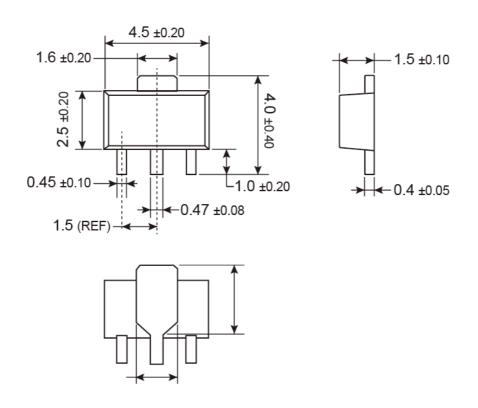
XX = Output Voltage (**05**=-5V, **09**=-9V)

= Year Code

Υ = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep,

J=Oct, K=Nov, L=Dec)


= Lot Code

3-Terminal 100mA Negative Voltage Regulator

SOT-89 Mechanical Drawing

Unit: Millimeters

Marking Diagram

XX = Output Voltage

(**05=**-5V)

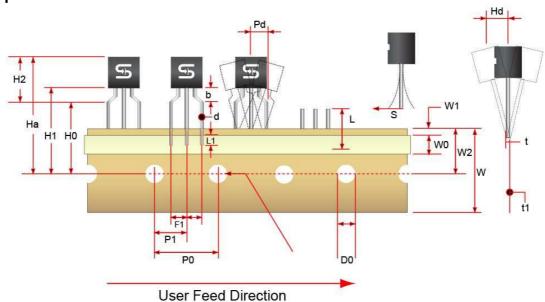
Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep,

J=Oct, K=Nov, L=Dec)

L = Lot Code



3-Terminal 100mA Negative Voltage Regulator

TO-92 Ammo Pack Specification

TO-92 Tape Leader and Trailer

TO-92 Tape Dimension

Item Description	Symbol	Dimension	
Base of Package to Lead Bend	b	3.0 (typ.)	
Component Height	На	23.57 (typ.)	
Lead Clinch Height	H0	16.0 ±0.5	
Component Base Height	H1	19.0 ±0.5	
Component Top to Lead Bend	H2	8.0 (max)	
Component Alignment (side / side)	Pd	1.02 (max)	
Component Alignment (front / back)	Hd	0.79 (max)	
Feed Hole Pitch	P0	12.7 ±0.3	
Hole Center to Component Center	P1	6.25 ±0.4	
Lead Spread	F1	2.5 ±0.3	
Lead Thickness	d	0.46 (typ.)	
Cut Lead Length	L	10.9 (max)	
Taped Lead Length	L1	5.31 (typ.)	
Taped Lead Thickness	t	0.81 ±0.2	
Carrier Tape Thickness	t1	0.5 ±0.2	
Carrier Tape Width	W	18.0 ±0.5	
Hold – down Tape Width	W0	0.5 ±0.2	
Hold – down Tape position	W1	9.0 ±0.7	
Feed Hole Position	W2	6.0 ±0.2	
Sprocket Hole Diameter	D0	4.0 ±0.2	
Lead Spring Out	S	0.1 (max)	

Note: All dimensions are in millimeter.

3-Terminal 100mA Negative Voltage Regulator

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.